新利18体育新

首页 Home | 新利体育客户端网址 | 人员 People | 科学研究 Science | 科研设备 Facilities | 新利18最新体育娱乐 | 人才培养 Education | 国际合作 Collaborations | 科学普及 Outreach | 诚聘英才 Recruitment | 访问指南 For Visitors
首页 Home
新利体育客户端网址
人员 People
科学研究 Science
新利18最新体育娱乐
人才培养 Education
科学普及 Outreach
诚聘英才 Recruitment
访问指南 For Visitors
内部链接 Internal
过往活动 Past Events
当前位置:首页 Home>>过往活动 Past Events>>正文

Colloquium on Apr. 21, 2022

Deep Learning Application for Reconstruction of Large-Scale Structure of the Universe


Speaker:Kana Moriwaki (University of Tokyo)

Venue:Video Conference

Time:16:00 PM, Thursday, Apr. 21, 2022

Abstract:

Line intensity mapping (LIM) is an observational technique that measures collective line intensity emissions from distant galaxies and intergalactic media. Observed large-scale structures provide information on cosmology and galaxy formation and evolution. A limitation with LIM is line confusion, where the contributions of different lines from different redshifts are all confused. In this study, we propose to use machine learning to solve it. We devise a generative adversarial network that extracts designated signals from LIM data. By training it on mock observational maps that simulate future observations, our network properly reconstructs the peak positions and statistics of intensity fluctuations. In this talk, I will introduce our new machine-learning architecture, show the results of the reconstruction, and discuss how it is done by the network.


Report PPT:SWIFAR_Kana Moriwaki.pdf

附件【SWIFAR_Kana Moriwaki.pdf已下载
关闭窗口

版权所有:新利18体育新

新利体育平台怎么样

Baidu
map