Distance measurements (for H0) in Astronomy

Zhijia TIAN Dec 15, 2023

Outline

- Why to measure distances? (e.g. Hubble Tension)
- How to measure distances?
- TRGB as distance indicators
- What can we do further more?

Part I

Why to measure distances?

- **Distance** is one of the most important Fundmental parameters in astronomy
- Stellar physics

Calibration of Period-Luminosity relation

- Structure of the Galaxy e.g. ~8 kpc from the Sun to GC
- Cosmology & Hubble Tension $H_0 = \frac{v}{d} \quad (cz = H_0 r)$

What is the Hubble Tension(哈勃常数危机)?

Figure 11. Summary of Hubble constant values in the past two decades based on Cepheid variables (blue squares), the TRGB (red circles and star), and estimates based on measurements of fluctuations in the CMB (WMAP: black diamonds; Planck: yellow diamonds; ACT + WMAP: cyan diamond). The CMB H_0 values assume a flat Λ CDM model. The CMB and Cepheid results straddle a range of 67–74 km s⁻¹ Mpc⁻¹, with the TRGB results falling in the middle and overlapping the CMB results. The tension between the CMB and TRGB results amounts to only 1.3 σ .

What is the Hubble Tension(哈勃常数危机)?

Recent Published H_0 Values

What is the Hubble Tension(哈勃常数危机)?

• Discrepancy of the H0 from observations and CMB and cosmological models, which is over 5σ .

Part II

How to measure distances?

(1) Astrometry-Parallaxe.g. *Hipparcos*, *Gaia* (for 1.8 billion stars)

$$d(kpc) = \frac{1}{Parallax(mas)}$$

(2) Distance indicators (tracers) - Standard candles
*RR Lyrae
*Cepheid

Credit: //www.stsci.edu

How to measure distances in astronomy?(3) Tip of Red Giant Branch

Based on constant luminosity (-4 mag)

Freedman 2021, ApJ

(4) Measure distances to galaxies with **globular cluster velocity dispersions**

-12

$$\sigma_{gl}^2 = \frac{M_{\text{vir}} G}{7.5 r_{\text{hm}}}$$
$$M_V = \beta_0 + \beta_1 \log_{10}(\sigma_{gl}) \stackrel{\geq}{\leq}$$

It actually depends on the relation between mass and luminosity of globulat clusters

M31 GCs Milky Way GCs -11Excluded Milky Way GCs -10^{-10} -9 -8 -7 -6 -5 2 3 4 5 10 20 30 1 Global velocity dispersion (km s^{-1}) arXiv:2312.01420,

accepted for publication in MNRAS

Dubath & Grillmair 1997

(5) Tully-Fisher method e.g. Width of 21cm HI line – Luminosity of galaxy $M = -6.25 \lg \frac{W_0}{\min i} - 3.5 \pm 0.3$

The Tully-Fisher (TF) relation is an empirically established correlation between the luminosity L of a spiral galaxy and its rotational velocity V (Tully-Fisher, 1977)

Credit: Irina Yegorova

(6) Extinction (sudden change) to measure the distance of molecular clouds

Chen, Bing-Qiu + 2020, MNRAS

How to measure distances in astronomy?(7) Eclipsing binaries as distance tracers

Table 1 Distance moduli of the studied eclipsing binary systems					
System OGLE-LMC-	RA (h min s)	Dec. (° ′ ″)	(<i>m – M</i>) (mag)	σ _{m–M} (mag)	Corr. (mag)
ECL-01866	04 52 15.28	-68:19:10.30	18.515	0.031	-0.028
ECL-03160	04 55 51.48	-69:13:48.00	18.474	0.013	-0.038
ECL-05430	05 01 51.74	-69:12:48.80	18.522	0.012	-0.028
ECL-06575	05 04 32.87	-69:20:51.00	18.483	0.011	-0.026
ECL-09114	05 10 19.64	-68:58:12.20	18.490	0.028	-0.009
ECL-09660	05 11 49.45	-67:05:45.20	18.465	0.019	0.029
ECL-09678	05 11 51.76	-69:31:01.10	18.501	0.018	-0.017
ECL-10567	05 14 01.89	-68:41:18.20	18.455	0.014	0.002
SC9- 230659	05 14 06.04	-69:15:56.90	18.456	0.026	0.009
ECL-12669	05 19 12.80	-69:06:44.40	18.450	0.019	-0.002
ECL-12875	05 19 45.39	-69:44:38.50	18.453	0.026	-0.009
ECL-12933	05 19 53.69	-69:17:20.40	18.476	0.025	0.000
ECL-13360	05 20 59.46	-70:07:35.20	18.489	0.013	-0.004
ECL-13529	05 21 23.34	-70:33:00.00	18.498	0.016	0.005
ECL-15260	05 25 25.66	-69:33:40.50	18.453	0.034	0.003
ECL-18365	05 31 49.56	-71:13:28.30	18.479	0.021	0.033
ECL-18836	05 32 53.06	-68:59:12.30	18.473	0.018	0.026
ECL-21873	05 39 51.19	-67:53:00.50	18.445	0.014	0.059
ECL-24887	05 50 39.02	-69:14:20.70	18.515	0.023	0.045
ECL-25658	06 01 <mark>58</mark> .77	-68:30:55.10	18.423	0.016	0.076

The first, second and third columns give the name, right ascension and declination, respectively, of the systems studied. The fourth column gives the distance modulus. The fifth column gives the total statistical uncertainty for the mean distance modulus estimated on the basis of Monte Carlo simulations. The geometrical corrections calculated from the model¹⁴ are given in the last column.

49.59 ± 0.09 (*statistical*) ± 0.54 (*systematic*) kpc for LMC

Pietrzyński et al., 2019, Nature, 567, 200

H0 measurement programs

- SH0ES (Supernovae and H0 for the Equation of State of dark energy)
- PI: Riess, Adam (Awarded the Nobel prize of 2011)
- CCHP (Chicago-Carnegie Hubble Program)
 PI: Freedman
 Based on HST observations
- EDD (Extragalatic Distance Database) Tully et al. 2009, AJ, 138, 323 The Extragalactic Distance Database: The Color–Magnitude Diagrams/Tip of the Red Giant Branch Distance Catalog, Anand+2021, AJ, 162, 80

Part III

TRGB as distance indicators

Assuming Limiting magnitude: ~27 mag

$$m = M + 5logd(pc) - 5 + A_V$$

• **RR Lyrae** $M_V \sim 0 \ mag \ (0.69 \pm 0.10 \ mag).$ $d \sim 2.5 \ Mpc$

- Tip of Red giant branch (**TRGB**) $M_I = -4 mag$ $d \sim 15 \text{ Mpc}$
- **Cepheid** $M_V \sim -6 mag$

d~40 Mpc

• SN Ia $M_V \sim -19.3 mag$

d~15000 Mpc

TRGB as standard candles to calibrate SN Ia

$$m = M + 5logd(pc) - 5 + A_V$$

$$\Delta M = \frac{5}{ln10} \frac{\Delta d}{d} \qquad \qquad \frac{\Delta d}{d} = \frac{\Delta H_0}{H_0}$$

0.1 mag for
$$\Delta M$$
, corresponding to $\frac{\Delta d}{d} \sim 4.6\%$,
and $\frac{\Delta H_0}{H_0} \sim 4.6\%$ (~ 3σ of H_0)

So, it's necessary to calibration TRGB precisionly.

Reserches on calibrating TRGB zero-point (First rung)

Freedman 2021, ApJ

Li, Si-Yang et al. 2022, ApJ, 939, 96

Part IV

What can we do further more?

Precisionly calibration of TRGB probably is the most feasible way to measure H0.

Figure 11. Summary of Hubble constant values in the past two decades based on Cepheid variables (blue squares), the TRGB (red circles and star), and estimates based on measurements of fluctuations in the CMB (WMAP: black diamonds; Planck: yellow diamonds; ACT + WMAP: cyan diamond). The CMB H_0 values assume a flat Λ CDM model. The CMB and Cepheid results straddle a range of 67–74 km s⁻¹ Mpc⁻¹, with the TRGB results falling in the middle and overlapping the CMB results. The tension between the CMB and TRGB results amounts to only 1.3 σ .

Calibration of TRGB

0.0040

2

2.5

Calibration of TRGB

• Calibration of TRGB with CSST and Mephisto CSST: ~27 mag (deep field)

Mephisto: 22.4 mag (Wide Survey i-band)

THE ASTROPHYSICAL JOURNAL, 938:113 (15pp), 2022 October 20 © 2022. The Author(s). Published by the American Astronomical Society. **OPEN ACCESS** https://doi.org/10.3847/1538-4357/ac8b7a

The Pantheon+ Analysis: The Full Data Set and Light-curve Release

Dan Scolnic¹, Dillon Brout^{2,20}, Anthony Carr³, Adam G. Riess^{4,5}, Tamara M. Davis³, Arianna Dwomoh¹, David O. Jones⁶, Noor Ali⁷, Pranav Charvu¹, Rebecca Chen¹, Erik R. Peterson¹, Brodie Popovic¹, Benjamin M. Rose¹, Charlotte M. Wood⁸, Peter J. Brown^{9,10}, Ken Chambers¹¹, David A. Coulter⁶, Kyle G. Dettman¹², Georgios Dimitriadis¹³, Alexei V. Filippenko^{14,15}, Ryan J. Foley⁶, Saurabh W. Jha¹², Charles D. Kilpatrick¹⁶, Robert P. Kirshner^{2,17}, Yen-Chen Pan¹⁸, Armin Rest¹⁹, Cesar Rojas-Bravo⁶, Matthew R. Siebert⁶, Benjamin E. Stahl¹⁴, and WeiKang Zheng¹⁴

1701 light curves of 1550 unique, spectroscopically confirmed Type Ia supernovae (SNe Ia)

SN Ia database

Summary

- About 10 methods to measure distance in astronomy
- TRGB zero-point \rightarrow Calibration of SN Ia \rightarrow SN Ia distance
- Precisionly zero-point of TRGB is probably the most feasible way to calibrate SN Ia to measure H0.
- From observations as well as numerical calculation(theoretical) to calibrate TRGB

Thanks