The unluckiest star: A spectroscopically confirmed repeated partial tidal disruption event AT 2022dbl

Lin et al. arXiv 2405.10895 Submitted to ApJ Letter

Journal Club, 2024-05-29

Tidal disruption events: full disruption (FTDE)

$$r_{t} = r_{s} \left(\frac{M_{BH}}{m_{s}}\right)^{\frac{1}{3}} = 23r_{sch} \left(\frac{r_{s}}{R_{sun}}\right) \left(\frac{m_{s}}{m_{sun}}\right)^{-1/3} \left(\frac{M_{BH}}{10^{6}M_{sun}}\right)^{-2/3}$$

₩D-8H encounter ********				
masses (sol.)	0.2 (WD) & 1000 (BH)			
in. separation	50 (in 1.E9 cm)			
hydrodynamics	SPH (4 030 000 particles)			
EOS, gravity	Helmholtz, N			
nucl. burning	red. QSE-network (Hix 98)			
simul. time	5.4 mìn			
color coded	column density			
penet. factor	12			
coding, simulation, visualisation:	S. Rosswog			

http://compact-merger.astro.su.se/Movies/IMBH1000_WD02_4e6parts_P12_N.mov

Partial tidal disruption event (PTDE)

- A star passing by the SMBH with pericentric distance r_p slightly larger than r_t could also cede part of its mass to the SMBH, producing a partial tidal disruption event.
- Key difference between PTDE and FTDE: A remnant core will survive (let's call it the "leftover star") and could produce many more PTDEs or end its life in FTDE.

Possible Mechanisms for Repeated PTDEs

- Single MBH
 - Repeated PTDEs by a single star, comes from disruption of binary star (Hills mechanism)
 - Double TDEs by two stars, originated from binary star (Mandel & Levin, 2015)
- Binary star + MBH binary on milli-pc-scale (Wu & Yuan, 2018)

This work

AT 2022dbl is a clear example of an optical/UV repeated pTDE, in quiescent galaxy

If, the third flare is observed in the future, strong evidence.

pTDE from the same star

The N III λ 4100 line (rare in TDEs) appeared in both flares

Published repeated pTDEs

Table 2. List of published repeated pTDEs

Name	Host Type	Band	Period/Interval (Days)	Flares	Peak Evolution
ASASSN-14ko ^{1,2,3,4}	Seyfert 2	Opt./UV/X-ray [†]	115.2	~30	Similar
eRASSt J045650.3-2037505,6	Quiescent	X-ray/UV [†]	299→193	5	Lower
AT2018fyk ^{7,8}	LINER/Retired	UV/X-ray	~ 1200	2	Lower
RX J133157.6-324319.79,10	Quiescent	X-ray	~ 10000	2	Similar
AT 2020vdq ^{11,12,13}	E+A	Opt./UV*/X-ray*	~ 870	2	Higher
AT 2022db114	QBS	Opt./UV	~710	2	Lower

NOTE-

- Band: [†] Not periodic. * Not observed during the first flare.

- Period/Interval: Only ASASSN-14ko shows a nearly constant period of 115.2 days. eRASSt J045650.3–203750 is ongoing; it has shown 5 flares with the interval declining from 299 days to \sim 193 days. Other pTDEs show only two flares. - Peak Evolution: The peak luminosity of the earlier flare versus that of the later flare.

AT 2020vdq (Somalwar et al. 2023): occurred in E+A galaxy, which has high intrinsic rate

The first systematically identified repeating partial tidal disruption event

JEAN J. SOMALWAR D,¹ VIKRAM RAVI,¹ YUHAN YAO,^{2,3} MURYEL GUOLO,⁴ MATTHEW GRAHAM,¹ ERICA HAMMERSTEIN,⁵ WENBIN LU,⁶ MATT NICHOLL,⁷ YASHVI SHARMA,¹ ROBERT STEIN,¹ SJOERT VAN VELZEN,⁸ ERIC C. BELLM,⁹ MICHAEL W. COUGHLIN,¹⁰ STEVEN L. GROOM,¹¹ FRANK J. MASCI,¹¹ AND REED RIDDLE,¹²

2020vdq v.s. 2022dbl

Conclusion

- AT 2022dbl is a clear example of an optical/UV repeated pTDE, in quiescent galaxy
 - Produced by the same star
- Repeated pTDEs provide valuable opportunities to test optical/UV emission models, as another flare is expected in the coming years.

Other potential sources

- Yao et al. (2023) published 30+ new TDEs (before Sept. 2021), of which
 - 5 show re-brightening signature: 2019baf, 2019ehz, 2020acka, 2021uqv, 2020vdq(#)
 - The rebrightening of **2020mot** may be hidden in the observation gap

Tidal Disruption Event Demographics with the Zwicky Transient Facility: Volumetric Rates, Luminosity Function, and Implications for the Local Black Hole Mass Function

Yuhan Yao^{(D),1} Vikram Ravi^{(D),1} Suvi Gezari^{(D),2,3} Sjoert van Velzen^{(D),4} Wenbin Lu^{(D),5} Steve Schulze^{(D),6}

Somalwar et al (2023), the second peak is brighter