Shocks power Tidal Disruption Events

Ryu, Krolik, Piran, Noble, Avara arXiv: 2505.05333

Reported by Shiyan Zhong

Journal Club, Oct, 11

Introduction

• What is TDE?

A star approaching to an MBH is torn apart and accreted, producing a luminous flare that can last for months to years.

Classic picture (Rees 1988):

- half of the debris are bound to the SMBH
- the debris quickly circularize to an accretion disk
- Small accretion disk (size $\sim 2r_{
 m p}$)
- High temperature \rightarrow soft X-ray, EUV
- Light curve closely follow the mass fall back rate \rightarrow Super Eddington accretion

Introduction

• What is TDE?

A star approaching to an MBH is torn apart and accreted, producing a luminous flare that can last for months to years.

Classic picture (Rees 1988):

- half of the debris are bound to the SMBH
- the debris quickly circularize to an accretion disk
- Small accretion disk (size $\sim 2r_{
 m p})$
- High temperature \rightarrow soft X-ray, EUV
- Light curve closely follow the mass fall back rate \rightarrow Super Eddington accretion

Challenged by observation:

- Observed luminosity rarely exceed Eddington
- Many TDEs are discovered in UV/Optical surveys
- Effective temperature is low: few 10^4 K

Inverse Energy Crisis (Piran+2015): more energy than demand

Milestones in energy (see the Conclusion section of this paper)

- Typical TDE flare radiates 3×10^{50} erg
- Circularizing bound debris into a disk (size $\sim 2r_{\rm p}$), shall release $7.5 \times 10^{51} \, {\rm erg}$
- Accretion of all bound debris shall release 3×10⁵³ erg

Proposed Solutions to Inverse Energy Crisis

- within the framework of classic picture (Piran+2015)
 - Photon trapping in the accretion flow
 - Outflow (kinetic energy)
 - Outflow (blow the debris away)
 - Outflow (reprocess higher energy photon)
- Alternative possibility (Shiokawa+2015; Piran+2015; Krolik+2016)
 - Circularization is slow
 - Radiation is powered by shocks at the pericenter and apocenter

Simulation setup

Time unit in the presentation

$$t_{0} = \frac{\pi}{\sqrt{2}} \frac{GM_{\bullet}}{\Delta E^{3/2}} \simeq 7.6 \text{ days } \left(\frac{\Xi}{1.64}\right)^{-3/2} \\ \left(\frac{M_{\bullet}}{10^{5} M_{\odot}}\right)^{1/2} \left(\frac{M_{\star}}{3 M_{\odot}}\right)^{-1} \left(\frac{R_{\star}}{2.4 R_{\odot}}\right)^{3/2}$$

Timing start point t = 0: when the most tightly bound debris return to the orbital pericenter

Most tightly bound debris

- fully relativistic hydrodynamic simulation
- 3 Msol star (MESA) + 10^5 Msol SMBH
- Long duration ~3 weeks.
- Energy dissipated only through shocks, no viscosity

The shock regions

Nozzle shock: debris stream converges to the equatorial plane

Temperature map in equatorial plane

Shiokawa+2015

The shock regions:

Self-intersecting shock at apocenter

Note the shocks also redistribute the angular momentum of the fluid element, making the gas flow rounder and rounder.

Circularized or not?

At the end of simulation ($t \approx 3t_0$), the dissipated specific orbital energy is only 10% of $E_{\rm circ}$

 $E_{\rm circ} = \frac{GM_{\rm BH}}{4r_{\rm p}}$

Just enough to power the radiation during the simulated period.

The debris forms an extended eccentric accretion flow with eccentricity $\approx 0.4 - 0.5$

To fully circularize, $> 30t_0$

Outflow?

The shocked gas expand outwards quasi-symmetrically, marginally bound, and eventually falls back

- Radiation pressure gradient built by shock heating
- Deflection caused by stream-stream collision

Figure 6. The azimuthally integrated density distribution at $t/t_0 = 0.5, 1, 2, \text{ and } 3$.

Photosphere radius

Thermalization photosphere

 $\sqrt{\tau_{\rm T} \tau_{\rm ff}} \simeq 1$

Generally quasi-spherical in shape, but also depend on the azimuthal angle Φ

At $t = t_0$,	$r \simeq 4000 - 5000 r_{\rm g}.$
$t = 2t_0$	$9000 - 10000r_{\rm g}$
$t = 3t_0$	$\simeq 12000 r_{\rm g}$
$r_g = 1.48$	×10 ¹⁰ cm
$L = \int_0^{2\pi} \int_{\theta_c}^{\pi - \theta_c}$	$\int_{r=r(t_{\rm cool} < t)}^{r=r(\tau=1)} \frac{aT^4}{t_{\rm cool}} r^2 \sin\theta dr d\theta d\phi,$

We estimate that the peak luminosity is $\simeq 10^{44}$ erg/s $\simeq 10 L_{\rm Edd}$, which occurs at $t \simeq t_0$. This is roughly the mean rate of thermal energy creation during the simulation. The photospheric temperature distribution at

Temperature

Interesting points:

- Multi-temperature photosphere ٠
- Observed temperature depends on view angle? •

 $\phi = 0.5 \pi$

 $p_{10}p [g cm^{-3}]$

t = 23.00 days

 $(2.93t_0)$

Conclusions

- 1. Shocks power the TDE radiation (at least in the simulated period)
- 2. Swift "circularization" does not happen, (need at least $30t_0$)
- 3. Radiatively efficient accretion of most of the debris mass onto the black hole certainly did not happen.
- 4. The initially bound debris does not become unbound.