

云南大学中国西南天文研究所 South-Western Institute For Astronomy Research, YNU

Could very low-metallicity stars with rotation-dominated orbits have been shepherded by the bar?

Zhen Yuan (袁珍), Chengdong Li (李承东), Nicolas F. Martin, Giacomo Monari, Benoit Famaey, Arnaud Siebert, Anke Ardern-Arentsen, Federico Sestito, Guillaume F. Thomas, Vanessa Hill, Rodrigo A. Ibata,Georges Kordopatis, Else Starkenburg, and Akshara Viswanathan

December 29, 2023 Shao Qinhao

Introduction

Models

Discussions & Conclusion

Very low-metallicity stars were discovered more than two thousands

In particular, these stars are close to the Sun's orbit.

Several hundred stars are rotation-dominated and prograde

Where did these very low-metallicity prograde stars come from?

(1) accreted from small satellites with specific orbits through minor mergers;

(2) brought in during the early assembly of the proto-Milky Way disc;

(3) formed in-situ from pockets of pristine gas at early times pushed into the solar neighborhood;

(4) originally in the inner Galaxy, that gained rotation and moved outwards due to the bar resonances.

AGAMA use the potential to model dynamical evolution

Models

Models

The potential of the bar:

$$\Phi_b(r,\theta,\phi,t) = \Phi_{br}(r)sin^2\theta cosm(\phi - \Omega_b t - \phi_b)$$

only consider the m = 2 quadrupole term Ω_b : the pattern speed ϕ_b : the phase angle, t = 0 Φ_{br} : the radial dependence of the bar potential

$$\Phi_{br}(r) = -\frac{AV_C^2}{2} (\frac{r}{r_{CR}})^2 (\frac{b+1}{b+r/r_{CR}})^5$$

A: the potential strength of the bar

 V_c : the circular velocity in the solar vicinity

 $b = r_b/r_{CR}$: the bar's scale length r_b / the co-rotation radius r_{CR}

The steadily rotating bar: $\Omega_b = -35 \ km s^{-1} kp c^{-1}$

The decelerating bar: $\Omega_b = -88 \ kms^{-1}kpc^{-1}$ at t = -6Gyr, $\Omega_b = -38 \ kms^{-1}kpc^{-1}$ at t = 0

Models

The potential of the spiral arms: (two-arm model)

$$\Phi_s(R,\theta,z) = -4\pi G \Sigma_0 e^{-R/R_s} \sum_n \frac{C_n}{K_n D_n} cosn\gamma [\cosh(\frac{K_n z}{\beta_n})]^{-\beta_n}$$

 Σ_0 : the central surface density

 C_n (n = 1,2,3): the amplitudes of the three harmonic terms, $C_1 = \frac{8}{3\pi}$, $C_2 = \frac{1}{2}$, $C_3 = \frac{8}{15\pi}$

The functional parameters:

$$K_n = \frac{nN}{Rsin\alpha}$$

$$D_n = \frac{1}{1+0.3K_nh_s} + K_nh_s$$

$$\beta_n = K_nh_s(1+0.4K_nh_s)$$

$$\gamma = N[\phi - \frac{\ln\left(\frac{R}{R_s}\right)}{tan\alpha} - \Omega_p t - \phi_0$$

N: the number of arms h_s : the scale height

lpha: the pitch angle ϕ_0 : the phase

Bar	$\Omega_{ m b}$	Α	$v_{\rm c}$	b	$r_{\rm CR}$	$\phi_{ m b}$	
Values	-35	0.02	235	0.28	6.7	28°	
Spiral arm	$\Omega_{ m p}$	$R_{ m s}$	$h_{ m s}$	N	α	ϕ_0	Σ_0
Values	-18.9	1.0	0.1	2	9.9°	26°	2.5×10^{9}

four different perturbation setups:

(i) constant bar only,

(ii) constant bar + spiral arms,

(iii) decelerating bar only,

(iv) decelerating bar + spiral arms

In the model of steadily rotating bar: No significant change.

In the model of decelerating bar: The particles with $J_{\phi} \leq 1000 km s^{-1}$ have gained stronger rotations, but as long as 8%.

Results

(1) spiral arms havelittle effect on theactions of the particles.

(2) The majority of the particles in fact lose rotation within the 6Gyr and only a small fraction of them (19%) gain rotation from interactions with the decelerating bar.

the bar's corotation resonance-trapped regions

The density contour plot of the change in the $(\Delta J_{\phi}, \Delta J_z)$ space for all particles

- A rotating bar cannot be a robust mechanism to explain the existence of these observed stars.
- These old prograde planar stars that are currently present in the solar neighborhood possibly have varied origins.

They were either born in-situ in the proto-MW disc, came from accreted systems that merged onto the MW with very prograde orbits, or were brought in with the clumps that formed the proto-MW.

• From the modeling aspect, there are key limitations:

(a) The decelerating bar model is only a toy model that cannot represent the true evolution history of the bar in the Galaxy.

(b) The test-particle simulation method does not include any response of the stellar systems to the perturbations by the bar and the spiral arms that is due to the self-gravity of the system itself.(c) the method does not take into account the evolution/increase of the background potential of the Galaxy.

 On the observational side, the strong selection effect of different ground-based survey samples used in this work may lead to misunderstanding their true distribution.