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1. Introduction

• Photometric redshift estimation is an essential process in modern
astronomy, determining the redshift of celestial objects, such as galaxies
and quasars.

• By measuring the object’s magnitude in different wavelength filters, such as
ultraviolet (u) or green (g), and evaluating the differences in magnitude to
determine the object’s color (u-g), we can use color values can help
estimate redshift for the celestial object(Newman & Gruen 2022).

― shedding light on distances for celestial objects

― advancing our grasp on galaxy formation and evolution



1. Introduction
• Traditional methods often employ spectroscopy to determine redshift,

utilizing galaxy spectral signature and wavelength shifts.

― However, this technique can be resource-intensive and expensive. 

― Furthermore, faint celestial objects can pose challenges to spectroscopic 
observations. 

• These drawbacks have led to the emergence of photometric redshift as a
viable alternative.

• Photometric redshift estimation harnesses the magnitude of extragalactic
objects as observed across multiple filters(Salvato et al. 2018).



1. Introduction
• Previous studies have found significant advancements.

• The CANDELS GOODS-S survey, utilizing the HST WFC3 H-band and ACS z-band,
has expand our understanding of photometric redshifts(Dahlen et al. 2013).

― the research found a direct correlation between the source magnitude and the 
precision of redshift estimation, emphasizing the role of magnitude in estimation.

• Another approach was utilizing Bayesian methodologies(Benitez 2000).

― By employing prior probabilities and Bayesian marginalization, this method was 
adept at utilizing previously overlooked data like the expected shape of redshift 
distributions and galaxy type fractions. 

• Given the next generation of surveys from the James Webb Space Telescope (JWST)
and Rubin Observatory (LSST), photometric redshift estimation needs a more data-
driven approach to accurately predict redshift based on observational data.



1. Introduction

• The primary objective of this paper is to explore novel computational
methods that take a data-driven approach to estimation, while increasing
accuracy.

• Specifically, this research aims to evaluate the reliability of Fully Connected
Neural Networks (FCN) in estimating photometric redshift using magnitude
data.

• We aim to create both a decision tree regression model and a FCN for
photometric redshift estimation. Comparison metrics between the two
methods will be RMS values and overall prediction accuracy.



2. Data

• Our study utilized a dataset from the Sloan Digital Sky Survey(Kollmeier et al.

2017) with 50,000 celestial objects.

• The 5 bands - u, g, r, i and z - represent different wavelengths of light from
each galaxy or quasar(Wyder et al. 2007). Alongside the magnitudes, the
dataset came with redshift value labels for each object.

• These redshifts were obtained from spectroscopic measurements from
SDSS.

• The first 5 rows can be found in Table 1.



2. Data Figure 1. The pairplot above 
shows the correlation between 
different magnitudes and their 
redshift values in the dataset.

• In Fig. 1, the distribution of the
redshift and magnitude values is
illustrated.

― For preprocessing, we performed 
sigma-clipping using a sigma value of 3 
standard deviations to remove 
outliers while retaining 95% of the 
data. 

― Additionally, we removed redshift 
values less than zero as these are not 
physical. 

― As a result, we ended with a dataset 
of 47,484 celestial objects out of the 
original 50,000.



3. Methodology

• Decision tree regressor.

― The decision tree regressor works by partitioning the datasets into small 
subsets. Each split is based on the value of the input features.

― Our features consisted of the 5 bandpass filters (u, g, r, i, z) as well as the colors 
formed by their magnitude differences (u − g, g − r, r − i, i − z).

― After splitting the data, we arrive at leaf nodes where the redshift values are as 
similar as possible. 

― Each leaf of the tree then predicts the average redshift of the instances that fall 
into it. 

― The model is simple and transparent, but doesn’t produce very good results in 
terms of RMS（0.16） and prediction. 



3. Methodology

• We chose a fully connected neural network that
used the Adaptive Moment Estimation
Optimizer(Kingma & Ba 2017) in order to create a
regression model to predict redshift.

― We used the ReLU activation function(Agarap 2019) 

which worked better than the sigmoid function to 
account for redshift predictions with values greater 
than 1 as well as to improve efficiency of the network. 

― Lastly we added a dropout rate of 0.2 to prevent 
overfitting after each layer. 



3. Methodology

• We minimise the mean squared error（MSE） as
the loss function in our neural network

― where y is the true redshift, ˆy is the predicted 
redshift, and n is the number of objects in a batch of 
the training set.



4. Result

Figure 3. The chart above shows true 
redshift vs predicted redshift correlation. 
There are few outliers, with majority of 
predictions being close to the best fit line. 

Figure 4. The chart above shows error bars 
along with the true redshift vs predicted 
redshift graph.



4. Result

Figure 5. The chart above shows the learning curve. The loss of the 
training function followed the same trajectory as that of the validation 
set, stabilizing and reaching an equilibrium, indicating a good fit.



5. Discussion
• The empirical evidence from our study has not only demonstrated a data-driven

approach but has shed light on incredibly efficient methods for photometric redshift
estimation.

• Compared to the traditional decision tree regression models, the Fully Connected
Neural Network showcases a clear edge in estimating redshifts.

• Moreover, as the acquisition of SED templates becomes increasingly challenging, the
need for approaches that can efficiently utilize raw astronomical data will become
more pressing.



• Our study underscores the untapped potential of data-driven methodologies in
photometric redshift estimation, particularly highlighting the superior capabilities of
FCNs over decision tree regressors.

• While traditional methods, such as decision tree regression, continue to hold value,
the evolving landscape of computational methods offers new opportunities for
precision and discovery in our universe.

• As we anticipate the demands of next-generation astronomical surveys, including
those from the James Webb Space Telescope and Large Synoptic Survey
Telescope(Ivezi´c et al. 2019), these data-centric approaches will be pivotal in unveiling
the redshift to find distances for far-away celestial objects, from quasars to galaxies.

6. Conclusions




